首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3015篇
  免费   297篇
  2021年   29篇
  2019年   30篇
  2018年   23篇
  2017年   34篇
  2016年   53篇
  2015年   77篇
  2014年   92篇
  2013年   102篇
  2012年   135篇
  2011年   173篇
  2010年   102篇
  2009年   81篇
  2008年   117篇
  2007年   126篇
  2006年   112篇
  2005年   127篇
  2004年   132篇
  2003年   126篇
  2002年   100篇
  2001年   138篇
  2000年   111篇
  1999年   89篇
  1998年   34篇
  1997年   25篇
  1996年   24篇
  1995年   21篇
  1994年   27篇
  1993年   31篇
  1992年   75篇
  1991年   66篇
  1990年   72篇
  1989年   83篇
  1988年   60篇
  1987年   64篇
  1986年   61篇
  1985年   45篇
  1984年   49篇
  1983年   37篇
  1982年   24篇
  1981年   28篇
  1980年   33篇
  1979年   44篇
  1978年   22篇
  1977年   29篇
  1976年   31篇
  1975年   19篇
  1974年   28篇
  1973年   17篇
  1971年   25篇
  1968年   15篇
排序方式: 共有3312条查询结果,搜索用时 15 毫秒
991.
Function of the heart begins long before its formation is complete. Analyses in mouse and zebrafish have shown that myocardial function is not required for early steps of organogenesis, such as formation of the heart tube or chamber specification. However, whether myocardial function is required for later steps of cardiac development, such as endocardial cushion (EC) formation, has not been established. Recent technical advances and approaches have provided novel inroads toward the study of organogenesis, allowing us to examine the effects of both genetic and pharmacological perturbations of myocardial function on EC formation in zebrafish. To address whether myocardial function is required for EC formation, we examined silent heart (sih−/−) embryos, which lack a heartbeat due to mutation of cardiac troponin T (tnnt2), and observed that atrioventricular (AV) ECs do not form. Likewise, we determined that cushion formation is blocked in cardiofunk (cfk−/−) embryos, which exhibit cardiac dilation and no early blood flow. In order to further analyze the heart defects in cfk−/− embryos, we positionally cloned cfk and show that it encodes a novel sarcomeric actin expressed in the embryonic myocardium. The Cfks11 variant exhibits a change in a universally conserved residue (R177H). We show that in yeast this mutation negatively affects actin polymerization. Because the lack of cushion formation in sih- and cfk-mutant embryos could be due to reduced myocardial function and/or lack of blood flow, we approached this question pharmacologically and provide evidence that reduction in myocardial function is primarily responsible for the defect in cushion development. Our data demonstrate that early myocardial function is required for later steps of organogenesis and suggest that myocardial function, not endothelial shear stress, is the major epigenetic factor controlling late heart development. Based on these observations, we postulate that defects in cardiac morphogenesis may be secondary to mutations affecting early myocardial function, and that, in humans, mutations affecting embryonic myocardial function may be responsible for structural congenital heart disease.  相似文献   
992.
Walsh P  Bursać D  Law YC  Cyr D  Lithgow T 《EMBO reports》2004,5(6):567-571
DnaJ is a molecular chaperone and the prototypical member of the J-protein family. J proteins are defined by the presence of a J domain that can regulate the activity of 70-kDa heat-shock proteins. Sequence analysis on the genome of Saccharomyces cerevisiae has revealed 22 proteins that establish four distinguishing structural features of the J domain: predicted helicity in segments I-IV, precisely placed interhelical contact residues, a lysine-rich surface on helix II and placement of the diagnostic sequence HPD between the predicted helices II and III. We suggest that this definition of the J-protein family could be used for other genome-wide studies. In addition, three J-like proteins were identified in yeast that contain regions closely resembling a J domain, but in which the HPD motif is non-conservatively replaced. We suggest that J-like proteins might function to regulate the activity of bona fide J proteins during protein translocation, assembly and disassembly.  相似文献   
993.

Background  

Unravelling the path from genotype to phenotype, as it is influenced by an organism's environment, is one of the central goals in biology. Gene expression profiling by means of microarrays has become very prominent in this endeavour, although resources exist only for relatively few model systems. As genomics has matured into a comparative research program, expression profiling now also provides a powerful tool for non-traditional model systems to elucidate the molecular basis of complex traits.  相似文献   
994.
The Magadi tilapia (Alcolapia grahami, formerly Oreochromis alcalicus grahami) is a remarkable example of teleost life in an extreme environment. Typical conditions include water pH=10, titration alkalinity>300 mM, osmolality=525 mOsm, temperatures ranging from 23 degrees to 42 degrees C, and O(2) levels fluctuating diurnally between extreme hyperoxia and anoxia. A number of relatively small tilapia populations are present in various thermal spring lagoons around the margin of the lake separated by kilometers of solid trona crust (floating Na(2)CO(3)) underlain by anoxic water. Despite the apparent isolation of different populations, annual floods may provide opportunities for exchange of fish across the surface of the trona and subsequent gene flow. To assess the question of isolation among Lake Magadi populations, we analyzed the variable control region of the mitochondrial DNA (mtDNA) from six lagoons. A total of seven mtDNA haplotypes, including three common haplotypes, were observed in all six populations. Several of the Lake Magadi populations showed haplotype frequencies indicative of differentiation, while others showed very little. However, differentiation among lagoon populations was discordant with their geographical distribution along the shoreline. All populations exhibited the unusual trait of 100% ureotelism but specialized morphological and physiological characteristics were observed among several of the lagoon systems. In addition, distinct differences were observed in the osmolality among the lagoons with levels as high as 1,400-1,700 mOsm kg(-1), with corresponding differences in the natural levels of whole-body urea. These levels of osmotic pressure proved fatal to fish from less alkaline systems but remarkably were also fatal to the fish that inhabited lagoons with this water chemistry. Upon more detailed inspection, specific adaptations to differential conditions in the lagoon habitat were identified that allowed survival of these cichlids. Additional evidence against potential for gene flow among lagoons despite the sharing of common mtDNA haplotypes was that the osmolality of floodwaters following a heavy rain showed lethal levels exceeding 1,700 mOsm kg(-1). In isolation, different mtDNA haplotypes would be predicted to go to fixation in different populations due to rapid generation times and the small effective population sizes in a number of lagoons. We propose a model of balancing selection to maintain common mtDNA sequences through a common selection pressure among lagoons that is based on microhabitats utilized by the tilapia.  相似文献   
995.
Neuronal activity and neurotrophins play a central role in the formation, maintenance, and plasticity of dendritic arbors. Here, we show that neuronal activity, mediated by electrical stimulation, KCl depolarization, or cholinergic receptor activation, promotes reversible dendrite formation in sympathetic neurons and that this effect is enhanced by NGF. Activity-dependent dendrite formation is accompanied by increased association of HMW MAP2 with microtubules and increased microtubule stability. Inhibition of either CaMKII or the MEK-ERK pathway, both of which phosphorylate MAP2, inhibits dendrite formation, but inhibition of both pathways simultaneously is required for dendrites to retract. These data indicate that neuronal activity signals via CamKII and the ERKs to regulate MAP2:microtubule interactions and hence reversible dendrite stability, and to provide a mechanism whereby activity and neurotrophins converge intracellularly to dynamically regulate dendritic morphology.  相似文献   
996.
S100 proteins belong to the EF-hand family of calcium binding proteins. Upon calcium binding, these proteins undergo a conformational change to expose a hydrophobic region necessary for target protein interaction. One member of the S100 protein family is S100A11, first isolated from chicken gizzard and termed calgizzarin. It was later isolated from other organisms and tissues including human placenta, pig heart and rabbit lung. The physiological target of S100A11 is thought to be annexin I, a phospholipid-binding protein involved in EGF receptor sorting. This work reports the 1H, 15N and 13C resonance assignments of rabbit apo-S100A11 determined using 15N, 13C-labelled protein and multidimensional NMR spectroscopy.  相似文献   
997.
The side chain of aspartate 95 in flavodoxin from Desulfovibrio vulgaris provides the closest negative charge to N(1) of the bound FMN in the protein. Site-directed mutagenesis was used to substitute alanine, asparagine, or glutamate for this amino acid to assess the effect of this charge on the semiquinone/hydroquinone redox potential (E(1)) of the FMN cofactor. The D95A mutation shifts the E(1) redox potential positively by 16 mV, while a negative shift of 23 mV occurs in the oxidized/semiquinone midpoint redox potential (E(2)). The crystal structures of the oxidized and semiquinone forms of this mutant are similar to the corresponding states of the wild-type protein. In contrast to the wild-type protein, a further change in structure occurs in the D95A mutant in the hydroquinone form. The side chain of Y98 flips into an energetically more favorable edge-to-face interaction with the bound FMN. Analysis of the structural changes in the D95A mutant, taking into account electrostatic interactions at the FMN binding site, suggests that the pi-pi electrostatic repulsions have only a minor contribution to the very low E(1) redox potential of the FMN cofactor when bound to apoflavodoxin. Substitution of D95 with glutamate causes only a slight perturbation of the two one-electron redox potentials of the FMN cofactor. The structure of the D95E mutant reveals a large movement of the 60-loop (residues 60-64) away from the flavin in the oxidized structure. Reduction of this mutant to the hydroquinone causes the conformation of the 60-loop to revert back to that occurring in the structures of the wild-type protein. The crystal structures of the D95E mutant imply that electrostatic repulsion between a carboxylate on the side chain at position 95 and the phenol ring of Y98 prevents rotation of the Y98 side chain to a more energetically favorable conformation as occurs in the D95A mutant. Replacement of D95 with asparagine has no effect on E(2) but causes E(1) to change by 45 mV. The D95N mutant failed to crystallize. The K(d) values of the protein FMN complex in all three oxidation-reduction states differ from those of the wild-type complexes. Molecular modeling showed that the conformational energy of the protein changes with the redox state, in qualitative agreement with the observed changes in K(d), and allowed the electrostatic interactions between the FMN and the surrounding groups on the protein to be quantified.  相似文献   
998.
The major growth seen in the biotechnology industry in recent decades has largely been driven by the exploitation of genetic engineering techniques. The initial benefits have been predominantly in the biomedical area, with products such as vaccines and hormones that have received broad public approval. In the environmental biotechnology and industrial ecology sectors, biotechnology has the potential to make significant advances through the use of genetically modified (GM) microbial inoculants that can reduce agri-chemical usage or remediate polluted environments. Although many GM inoculants have been developed and tested under laboratory conditions, commercial exploitation has lagged behind. Here, we review scientific and regulatory requirements that must be satisfied as part of that exploitation process. Particular attention is paid to new European Union (EU) regulations (Directives) that govern the testing and release of genetically modified organisms and microbial plant protection inoculants in the EU. With regard to the release of GM inoculants, the impact of the inoculant and the fate of modified genes are important concerns. Long term monitoring of release sites is necessary to address these issues. Data are reported from the monitoring of a site 6 years after release of GM Sinorhizobium meliloti strains. It was found that despite the absence of a host plant, the GM strains persisted in the soil for at least 6 years. Horizontal transfer and microevolution of a GM plasmid between S. meliloti strains was also observed. These data illustrate the importance of assessing the long-term persistence of GM inoculants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
999.
Strains of Pseudomonas aeruginosa can be phenotypically classified by their mode of pathogenicity as either invasive, where the bacterium is internalised by host cells, or cytotoxic, where the host cell is killed without internalisation through the expression of cytotoxicity factors. These phenotypes are thought to depend primarily on the interactions of pseudomonal membrane and secreted proteins with host cells. We report here comparisons of outer membrane and extracellular protein-enriched fractions from invasive (PAO1) and cytotoxic (6206) strains of P. aeruginosa separated by two-dimensional (2-D) gel electrophoresis. Gel image comparisons revealed the two strains express essentially identical membrane protein profiles under the conditions investigated. Membrane protein strain differences were typically the result of minor amino acid sequence variations resulting in small mass and isoelectric point shifts visible on 2-D gels. Analysis of extracellular proteins from stationary phase growth, however, revealed significantly different protein profiles. Extracellular fractions from the invasive PAO1 strain were dominated by extracellular proteases including elastase (LasB), LasA protease and chitin-binding protein, as well as several previously designated 'hypothetical' proteins. LasB appeared to be highly processed with 28 discrete mass and isoelectric point forms detected in this study. The significant number of active extracellular proteases (including LasB itself) may account for this processing. Conversely, extracellular fractions from strain 6206 consisted mainly of cellular and membrane exposed proteins including GroEL, DnaK and flagellar subunits. These are thought to result from cellular turnover during growth and the reliance on the secretory mechanisms of this strain to produce high levels of cytotoxicity factors, such as ExoU, which may be produced only upon specific interactions with host cells. These studies will aid in elucidating the differences between invasive and cytotoxic P. aeruginosa at the proteome level.  相似文献   
1000.
The vasculature of the normal and arthritic knee is described. The joint contains a number of different tissues, many of which are heterogeneous and each with varying degrees of vascularization. In the normal joint the vasculature is highly organised, some tissues are highly vascular with well defined vascular organisation, whilst other tissues are avascular. During arthritis vascular turnover is increased. This vascular plasticity leads to redistribution of the vascular bed and may compromise its functional ability. The normal joint is able to regulate its blood flow, but this ability may be compromised by the inflammation and increased synovial fluid volume that are associated with joint disease. Growth of the subchondral vasculature into the articular cartilage may also occur, leading to ossification of the articular cartilage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号